Architectural Library
Our mission at Bristolite is to provide our customers with the highest quality products and supreme service at an exceptional value. We also aim to provide the industry with an abundance of accurate and useful information relative to daylighting and energy conservation. We take our corporate responsibility to our employees, associates, industry colleagues and customers very seriously and we see ourselves as stewards for the efficient use of sustainable carbon free energy.

ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers
1791 Tullie Circle, N.E.
Atlanta, GA 30329
Toll-free for Customer Service: (800) 527-4723 (U.S. and Canada only)
Phone: (404) 636-8400
Fax: (404) 321-5478
www.ashrae.org

ASHRAE – The American Society of Heating, Refrigeration, and Air Conditioning Engineers is an internationally recognized organization of professionals dedicated to the exchange of knowledge and experiences in this industry for the benefit of both field practitioners and the public. ASHRAE has grown and evolved right alongside of the technical advances of the industries it influences. The roots of ASHRAE date back to the late 1800’s. Until 1954, it was known as the American Society of Heating and Ventilating Engineers (ASHVE), indicative of the fact that modern air conditioning devices didn’t start to penetrate the market until the 1950’s. As utility costs continue to rise, and more consideration is given to indoor air quality and other public safety issues, ASHRAE has focused its efforts to improve efficiency of systems, as well as monitoring factors influencing air quality. ASHRAE publishes an industry handbook that is updated every year. It consists of four volumes; Fundamentals, HVAC Applications, HVAC Systems and Equipment, and Refrigeration. These volumes are written, tested and updated based on information that comes from the field, as well as the laboratory. Perhaps ASHRAE’s most important series of publications are the various standards that are related to HVAC systems and issues. While not legally enforceable, they are commonly accepted by architects, engineers and tradesmen as guidelines that help define what is needed in a given building, and in a given region. For example, ASHRAE Standard 62-1989 defines the Minimum Ventilation Requirement (MVR) for homes and takes into account many different factors. Before going further, it is important for the reader to understand that all homes/buildings have air leakage through the every materials that they are constructed of. Standard 62-1989 recommends that homes have an air leakage rate of at least .35 of its total air volume change each hour, or that the home’s air change at a rate of 15 cubic feet per minute per person living there, whichever is greater. This standard is becoming more important as homeowners, builders, and contractors seek to ‘tighten up’ air leakage in an effort to lower heating costs. A test with a device known as a blower door helps professionals determine the general air tightness of a home. If a home should be deemed too airtight, a mechanical whole house ventilation system would be required. It is important to mention that this as well as other ASHRAE standards are updated regularly. To obtain the most up to date information, visit www.ashrae.org.

Perhaps one of ASHRAE’s most significant contributions to the science of HVAC is the recognition of climate zones. Even a person not skilled in the art can understand that a building nearer to the equator will have a different set of environmental conditions to overcome than one that is closer to the poles. Most metropolises are built in temperate zones, which is to say, they experience a change (sometimes dramatic) in season. Therefore, strategies must be employed to not only heat the building in the winter, but also cool the building in the summer. At all times, sufficient ventilation (supply of fresh air) must be present. ASHRAE’s climate zones take into account several key parameters including:

  • Latitude
  • Altitude
  • Proximity to large bodies of water

For an extensive explanation of ASHRAE’s climate zones, check out

http://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter/article/1420

and

http://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter/article//1420.articletopdf?homepage_url=http://resourcecenter.pnl.gov/cocoon/morf/ResourceCenter&site_name=ResourceCenter

    Leed Credits Estimate

    Please complete the information requested below including the Bristolite model number you plan to specify and/or purchase.

  • Name:
  • Company:
  • Telephone :
  • Email:
  • Project Name :
  • Bristolite Model Number:
  •  
  • You will receive by return email a LEED Credits Worksheet providing an estimate for the following.

    Post Industrial / Pre-Consumer Recycled Content ______%
    Material used in manufacturing of the product.

    Post Consumer Recyclable Content ______%
    Recyclable material after product life.

    Local Regional Materials _____% (Our materials do not routinely qualify)
    Material Inbound/Outbound sourced within 500 miles of destination.

Trituff Copolyester Passes 267 lb/
36" ASTM Drop Test

A new, pending ASTM skylight fall protection drop test requires dropping a 267 lb sand filled canvas bag with a 5.5" bull nose from a height of 36" on the skylight glazing. As evidenced by this video Trituff Coployester passes the test. The total impact force and pressure developed in this test is 2,278.6 foot pounds and 95.9 lb per square inch.

Tufflite Heavy Weather / High Security Polycarbonate Takes a Tromping

Rick Beets, Bristolite President, demonstrates the resilience of Tufflite for customers. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security Polycarbonate Takes a Beating

Rick Beets, Bristolite President, demonstrates the impact resistance of Tufflite for customers. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA# 10-0216.02 and Florida Building Code Approved # FL14006.

Energy Star Fiberlite CC1 Fire Resistance

Energy Star Fiberlite, Trituff Copolyester and Tufflite Polycarbonate are all CC1 Fire Rated.

Custom Glass Skylight Positive Load Cycling after Large Missile Impact Test

Positive load cycling from 10.30 psf to 51.38 psf after large missile impact test. This model 1000 custom glass skylight series is Miami Dade County Hurricane Zone Approved NOA # 07-0524.05.

Custom Glass Skylight Positive and Negative Load Cycling

Positive load cycling from 10.30 psf to 51.38 psf and negative load cycling from 20.6 psf to 34.3 psf. This model 1000 custom glass skylight series is Miami Dade County Hurricane Zone Approved NOA # 07-0524.05.

Custom Glass Skylight Negative Load Cycling

Negative load cycling from 20.6 psf to 34.3 psf after multiple large missile impact tests. This model 1000 custom glass skylight series is Miami Dade County Hurricane Zone Approved NOA # 07-0524.05.

Custom Glass Skylight Large Missile Impact Test

Large missile impact test requires firing a 9 lb missile at a velocity of 49 fps to 50 fps at a distance of 17 ft from the skylight. This model 1000 custom glass skylight series is Miami Dade County Hurricane Zone Approved NOA # 07-0524.05.

Custom Glass Skylight Large Missile Impact Test

Large missile impact test requires firing a 9 lb missile at a velocity of 49 fps to 50 fps at a distance of 17 ft from the skylight. This model 1000 custom glass skylight series is Miami Dade County Hurricane Zone Approved NOA # 07-0524.05.

20 Year Old Energy Star Fiberlite
Supports 5,000 lb

20 year old Energy Star Fiberlite supports 5,000 lb in a concentrated (1 sq ft) load test by an independent 3rd party testing laboratory.

Trituff Copolyester Supports 1,950 lb

Trituff Copolyester supports 1,950 lb in a concentrated (1 sq ft) load test by an independent 3rd party testing laboratory.

Tufflite Heavy Weather / High Security Polycarbonate Negative Load Cycling

Negative 19.5 psf to 32.5 psf load cycling. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security Polycarbonate Positive Load Cycling

Positive 11.0 psf to 55.0 psf load cycling. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security Polycarbonate Negative Load Cycling

Negative 19.5 psf to 32.5 psf load cycling. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security
Positive and Negative Load Cycling

Positive 11.0 psf to 55.0 psf and negative 19.5 psf to 32.5 psf load cycling. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security Polycarbonate Negative Load Cycling

Negative 19.5 psf to 32.5 psf load cycling. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security Polycarbonate
Positive and Negative Load Cycling

Positive 11.0 psf to 55.0 psf and negative 19.5 psf to 32.5 psf load cycling. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Gladiator Safety Screen
Supports 600 lb Static Load

Gladiator Safety Screen installed on a wood curb supports two 300 lb loads in opposing corners.

Gladiator Safety Screen
Supports 867 lb Static Load

Gladiator Safety Screen installed on a wood curb supports two 300 lb loads in opposing corners and a 267 lb load in the center for a total static load of 867 lb

Gladiator Safety Screen
Passes 267 lb / 36" ASTM Drop Test

A new, pending ASTM skylight fall protection drop test requires dropping a 267 lb sand filled canvas bag with a 5.5" bull nose from a height of 36" on the skylight glazing. As evidenced by this video our Gladiator Safety Screen passes the test. The total impact force and pressure developed in this test is 2,278.6 foot pounds and 95.9 lb per square inch.

Gladiator Safety Screen
Passes 267 lb / 36" ASTM Drop Test

A new, pending ASTM skylight fall protection drop test requires dropping a 267 lb sand filled canvas bag with a 5.5" bull nose from a height of 36" on the skylight glazing. As evidenced by this video our Gladiator Safety Screen passes the test. The total impact force and pressure developed in this test is 2,278.6 foot pounds and 95.9 lb per square inch.

Tufflite Heavy Weather / High Security Polycarbonate Large Missile Impact Test

Large missile impact test requires firing a 9 lb missile at a velocity of 49 fps to 50 fps at a distance of 17 ft from the skylight. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.

Tufflite Heavy Weather / High Security Polycarbonate Large Missile Impact Test

Large missile impact test requires firing a 9 lb missile at a velocity of 49 fps to 50 fps at a distance of 17 ft from the skylight. This Tufflite model HWHS (Heavy Weather High Security) skylight is Miami Dade County Hurricane Zone Approved NOA # 10-0216.02 and Florida Building Code Approved # FL14006.